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ABSTRACT: 

                 This Paper concerns with the problem of obtaining non-zero distinct integer solutions 

to the non-homogeneous Quintic Diophantine equation with three unknowns given by 

522 155)(3 zxyyx  . Various sets of distinct integer solutions to the considered quintic 

equation are studied through employing the linear transformation )0(,,  vuvuyvux  

and applying the method of factorization. 
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INTRODUCTION: 

The non-homogeneous ternary Quintic Diophantine equation offers an unlimited field for 

research due to their variety [1-4]. In particular, one may refer [5-16] for quintic equations with 

three and five unknowns. This communication concerns with yet another interesting ternary 

quintic equation 522 155)(3 zxyyx  is analysed for its non-zero distinct integer solutions 

through different methods. 

METHOD OF ANALYSIS: 

                       The Non-Homogeneous Ternary Quintic Diophantine equation to be solved  for 

non-zero distinct integral solution is  

                                   522 155)(3 zxyyx                                                                               (1) 

       To start with, observe that (1) is satisfied by the following integer triples (x,y,z):(5,3,1) 

(-5,-3,1),(3,5,1),(-3,-5,1), )3,27,54( 255 kkk 

))353(15,)353(15,)353(15( 2223223  kkkkkkk  

 However, there are other sets of integer solutions to (1) that are illustrated below: 

  ILLUSTRATION 1: 

                  Introduction of the linear transformation                  

                                       0,,  vuvuyvux                                                                  (2) 

           In (1), it becomes  

                            522 1511 zvu                                                                                                  (3) 

             The above equation is solved for u, v and z through   different methods and using (2), the 

values of  x and y satisfying (1), are obtained which are given below 

 METHOD 1: 

                    After performing a few calculations, it is observed that (3) is satisfied by, 
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         In view of (2), the corresponding integer solutions to (1) are found to be  
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ILLUSTATION 3:        

                   Assume          22 11baz                                                                                         (5) 

        Case (i): 

                  Write 15 as                   

                                            )112)(112(15 ii                                                                    (6) 

            Using (5) and (6) in (3) and employing the method of factorization, define 

                                       
5)11)(112()11( biaiviu               

              Equating the real and imaginary parts, we get      
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        In view (2), we obtain 
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
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Thus (5) and (7) represent the integer solutions to (1). 

Case (ii): 

                     Write 15 as 

                                       
  

4

117117
15

ii 
                                                                        (8) 

        Using (5) and (8) in (3) and applying the method of factorization , define 

                                             511
2

117
11 bia

i
viu 


  

      Equating the real and imaginary parts, we get 

                                     

    
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  In view (2), we obtain 
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









53244235

53244235

10899904518153303

2422201024204404

bbabaabbaay

bbabaabbaax
                    (9) 

      Thus (5) and (9) represents the integer solution to (1). 

METHOD III: 

                       Equation (3) can be written as 

                                      1*1511 522 zvu                                                                                 (10) 

        Write 1 on the R.H.S. of (10) as 

                                  
  

100

11311131
1

ii 
                                                                            (11) 

    Using (6), (6) & (11) in (10) and utilizing the method of factorization, define 

                                     
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           Equating the real and imaginary parts, we get 
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In view of (2), we obtain 
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           (12) 

To obtain the integer solutions, replacing a by 5A and b by 5B in (5) & (12), the corresponding 

integer solutions of (1) are given by 
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Thus (5) & (13) represent the integer solution to (1). 
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    NOTE 1: 

                     The integer 1 on the R.H.S of (10) is also expressed as below: 

                                 (i)   
  

36
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ii 
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                                (ii)    
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
 

  

            By considering suitable combinations of integers 15 &1 from Note 1 in (3), some more 

sets of integer solutions to (1) are obtained. 

 

   ILLUSTRATION II: 

                         Introduction of the linear transformations 

                                          vuyvux  33 15,15  ,        0 vu                                      (14) 

          In (1) leads to  

                                                 522 11 wvu                                                                          (15)   

    The above equation is solved for u, v and z through different methods and using (14), the   

  values of x and y satisfying (1), are obtained which are illustrated below 

  METHOD IV:                  

                       Write 1one the R.H.S of (15) as 

                                         
  
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                                                                     (16) 

Using (5) and (16) in (14) and employing the method of factorization, define 
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Equating the real and imaginary parts, we get    

                                                                                                                                                                                                                       

    

    53244235

53244235

121110516051103
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1
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1
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

 

In view (13), the corresponding integer solutions to (1) are found to be 
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    
    532442354

532442354

12111051760511015

12111051660511025

bbabaabbaaY
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


                      (17) 

To obtain the integer solutions, replacing a by 5A and b by 5B in (5) & (17), the corresponding 

integer solutions of (1) are given by         
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5324423543
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             (18) 

Thus (5) and (18) represents the integer solutions to (1). 

CONCLUSION:   

                                         In this paper, we have presented four different methods of obtaining 

infinitely many non-zero distinct integer solutions of the non-homogeneous given by

522 155)(3 zxyyx   . To conclude, one may search for integer solutions to the other choice 

of  non-homogeneous ternary quintic Diophantine equations along with suitable properties.  
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