ON FINDIND INTEGER SOLUTIONS TO THE NON-HOMOGENEOUS TERNARY QUINTIC DIOPHANTINE EQUATION

$$
3\left(x^{2}+y^{2}\right)-5 x y=15 z^{5}
$$

T. Mahalakshmi ${ }^{1}$, E. Shalini ${ }^{2}$
${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affilliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

${ }^{2}$ PG Scholar, Department of Mathematics, Shrimati Indira Gandhi college,

Affilliated to Bharathidasan University, Trichy-620 002, Tamil Nadu ,India

Abstract

:

This Paper concerns with the problem of obtaining non-zero distinct integer solutions to the non-homogeneous Quintic Diophantine equation with three unknowns given by $3\left(x^{2}+y^{2}\right)-5 x y=15 z^{5}$. Various sets of distinct integer solutions to the considered quintic equation are studied through employing the linear transformation $x=u+v, y=u-v,(u \neq v \neq 0)$ and applying the method of factorization.

KEYWORDS: Ternary quintic, Non-homogeneous quintic, Integer solutions

IRJEdT

INTRODUCTION:

The non-homogeneous ternary Quintic Diophantine equation offers an unlimited field for research due to their variety [1-4]. In particular, one may refer [5-16] for quintic equations with three and five unknowns. This communication concerns with yet another interesting ternary quintic equation $3\left(x^{2}+y^{2}\right)-5 x y=15 z^{5}$ is analysed for its non-zero distinct integer solutions through different methods.

METHOD OF ANALYSIS:

The Non-Homogeneous Ternary Quintic Diophantine equation to be solved for non-zero distinct integral solution is

$$
\begin{equation*}
3\left(x^{2}+y^{2}\right)-5 x y=15 z^{5} \tag{1}
\end{equation*}
$$

To start with, observe that (1) is satisfied by the following integer triples $(\mathrm{x}, \mathrm{y}, \mathrm{z}):(5,3,1)$
$(-5,-3,1),(3,5,1),(-3,-5,1),\left(54 \alpha^{5 k}, 27 \alpha^{5 k}, 3 \alpha^{2 k}\right)$
$\left(15^{3} k\left(3 k^{2}-5 k+3\right)^{2}, 15^{3}\left(3 k^{2}-5 k+3\right)^{2}, 15\left(3 k^{2}-5 k+3\right)\right)$
However, there are other sets of integer solutions to (1) that are illustrated below:

ILLUSTRATION 1:

Introduction of the linear transformation

$$
\begin{equation*}
x=u+v, y=u-v, u \neq v \neq 0 \tag{2}
\end{equation*}
$$

In (1), it becomes

$$
\begin{equation*}
u^{2}+11 v^{2}=15 z^{5} \tag{3}
\end{equation*}
$$

The above equation is solved for u, v and z through different methods and using (2), the values of \mathbf{x} and y satisfying (1), are obtained which are given below

METHOD 1:

After performing a few calculations, it is observed that (3) is satisfied by,

$$
\begin{aligned}
& u=15^{3} m\left(m^{2}+11 n^{2}\right)^{2} \\
& v=15^{3} n\left(m^{2}+11 n^{2}\right)^{2} \\
& z=15\left(m^{2}+11 n^{2}\right)
\end{aligned}
$$

In view of (2), the corresponding integer solutions to (1) are found to be

International Research Journal of Education and Technology

Peer Reviewed Journal

ISSN 2581-7795

$$
\begin{align*}
& x=15^{3}(m+n)\left[\left(m^{2}+11 n^{2}\right)^{2}\right] \\
& y=15^{3}(m-n)\left[\left(m^{2}+11 n^{2}\right)^{2}\right] \tag{4}\\
& z=15\left(m^{2}+11 n^{2}\right)
\end{align*}
$$

ILLUSTATION 3:

Assume $\quad z=a^{2}+11 b^{2}$

Case (i):

Write 15 as

$$
\begin{equation*}
15=(2+i \sqrt{11})(2-i \sqrt{11}) \tag{6}
\end{equation*}
$$

Using (5) and (6) in (3) and employing the method of factorization, define

$$
(u+i \sqrt{11} v)=(2+i \sqrt{11})(a+i \sqrt{11} b)^{5}
$$

Equating the real and imaginary parts, we get

$$
\begin{aligned}
& u=2 a^{5}-220 a^{3} b^{2}+1210 b^{4}-55 a^{4} b+1210 a^{2} b^{3}-1331 b^{5} \\
& v=a^{5}+10 a^{4} b-220 a^{2} b^{3}+242 b^{5}-110 a^{3} b^{2}+605 a b^{4}
\end{aligned}
$$

In view (2), we obtain

$$
\left.\begin{array}{l}
x=3 a^{5}-330 a^{3} b^{2}-45 a^{4} b+990 a^{2} b^{3}+1815 a b^{4}-1089 b^{5} \\
y=a^{5}-65 a^{4} b-110 a^{3} b^{2}+1430 a^{2} b^{3}+605 a b^{4}-1573 b^{5} \tag{7}
\end{array}\right\}
$$

Thus (5) and (7) represent the integer solutions to (1).

Case (ii):

Write 15 as

$$
\begin{equation*}
15=\frac{(7+i \sqrt{11})(7-i \sqrt{11})}{4} \tag{8}
\end{equation*}
$$

Using (5) and (8) in (3) and applying the method of factorization, define

$$
(u+i \sqrt{11} v)=\frac{(7+i \sqrt{11})}{2}(a+i \sqrt{11} b)^{5}
$$

Equating the real and imaginary parts, we get

$$
\begin{aligned}
& u=\frac{1}{2}\left[7\left(a^{5}-110 a^{3} b^{2}+605 a b^{4}\right)-11\left(5 a^{4} b-110 a^{2} b^{3}+121 b^{5}\right)\right] \\
& v=\frac{1}{2}\left[\left(a^{5}-110 a^{3} b^{2}+605 a b^{4}\right)+7\left(5 a^{4} b-110 a^{2} b^{3}+121 b^{5}\right)\right]
\end{aligned}
$$

In view (2), we obtain

$$
\left.\begin{array}{l}
x=4 a^{5}-440 a^{3} b^{2}+2420 a b^{4}-10 a^{4} b-220 a^{2} b^{3}-242 b^{5} \tag{9}\\
y=3 a^{5}-330 a^{3} b^{2}+1815 a b^{4}-45 a^{4} b+990 a^{2} b^{3}-1089 b^{5}
\end{array}\right\}
$$

Thus (5) and (9) represents the integer solution to (1).

METHOD III:

Equation (3) can be written as

$$
\begin{equation*}
u^{2}+11 v^{2}=15 z^{5} * 1 \tag{10}
\end{equation*}
$$

Write 1 on the R.H.S. of (10) as

$$
\begin{equation*}
1=\frac{(1+i 3 \sqrt{11})(1-i 3 \sqrt{11})}{100} \tag{11}
\end{equation*}
$$

Using (6), (6) \& (11) in (10) and utilizing the method of factorization, define

$$
(u+i \sqrt{11} v)=(2+i \sqrt{11})(a+i \sqrt{11} b)^{5}\left[\frac{(1+i 3 \sqrt{11})}{10}\right]
$$

Equating the real and imaginary parts, we get

$$
\begin{aligned}
& u=\frac{1}{10}\left\{-31\left(a^{5}-110 a^{3} b^{2}+605 a b^{4}\right)-77\left(5 a^{4} b-110 a^{2} b^{3}+121 b^{5}\right)\right\} \\
& v=\frac{1}{10}\left\{7\left(a^{5}-110 a^{3} b^{2}+605 a b^{4}\right)-31\left(5 a^{4} b-110 a^{2} b^{3}+121 b^{5}\right)\right\}
\end{aligned}
$$

In view of (2), we obtain

$$
\left.\begin{array}{l}
x=\frac{1}{5}\left\{-12\left(a^{5}-110 a^{3} b^{2}+605 a b^{4}\right)-54\left(5 a^{4} b-110 a^{2} b^{3}+121 b^{5}\right)\right\} \\
y=\frac{1}{5}\left\{-19\left(a^{5}-110 a^{3} b^{2}+605 a b^{4}\right)-23\left(5 a^{4} b-110 a^{2} b^{3}+121 b^{5}\right)\right\} \tag{12}
\end{array}\right\}
$$

To obtain the integer solutions, replacing a by 5 A and b by 5 B in (5) \& (12), the corresponding integer solutions of (1) are given by

$$
\begin{align*}
& x=-5^{4}\left\{12\left(A^{5}-110 A^{3} B^{2}+605 A B^{4}\right)+54\left(5 A^{4} B-110 A^{2} B^{3}+121 B^{5}\right)\right\} \\
& y=-5^{4}\left\{19\left(A^{5}-110 A^{3} B^{2}+605 A B^{4}\right)+23\left(5 A^{4} B-110 A^{2} B^{3}+121 B^{5}\right)\right\} \tag{13}\\
& z=25\left(A^{2}+11 B^{2}\right)
\end{align*}
$$

Thus (5) \& (13) represent the integer solution to (1).

IRJEdT

NOTE 1:

The integer 1 on the R.H.S of (10) is also expressed as below:
(i) $1=\frac{(5+i \sqrt{11})(5-i \sqrt{11})}{36}$
(ii) $1=\frac{(2 \sqrt{15+\sqrt{11}})(2 \sqrt{15}-\sqrt{11})}{49}$

By considering suitable combinations of integers $15 \& 1$ from Note 1 in (3), some more sets of integer solutions to (1) are obtained.

ILLUSTRATION II:

Introduction of the linear transformations

$$
\begin{equation*}
x=15^{3}(u+v), y=15^{3}(u-v), \quad u \neq v \neq 0 \tag{14}
\end{equation*}
$$

In (1) leads to

$$
\begin{equation*}
u^{2}+11 v^{2}=w^{5} \tag{15}
\end{equation*}
$$

The above equation is solved for u, v and z through different methods and using (14), the values of x and y satisfying (1), are obtained which are illustrated below

METHOD IV:

Write lone the R.H.S of (15) as

$$
\begin{equation*}
1=\frac{(1+i 3 \sqrt{11})(1-i 3 \sqrt{11})}{100} \tag{16}
\end{equation*}
$$

Using (5) and (16) in (14) and employing the method of factorization, define

$$
(u+i \sqrt{11} v)=(a+i \sqrt{11} b)^{5}\left[\frac{(1+i 3 \sqrt{11})}{10}\right]
$$

Equating the real and imaginary parts, we get

$$
\begin{aligned}
& u=\frac{1}{10}\left\{1\left(a^{5}-110 a^{3} b^{2}+605 a b^{4}\right)-33\left(5 a^{4} b-110 a^{2} b^{3}+121 b^{5}\right)\right\} \\
& v=\frac{1}{10}\left\{3\left(a^{5}-110 a^{3} b^{2}+605 a b^{4}\right)+1\left(5 a^{4} b-110 a^{2} b^{3}+121 b^{5}\right)\right\}
\end{aligned}
$$

In view (13), the corresponding integer solutions to (1) are found to be

IRJEdT
ISSN 2581-7795

$$
\begin{align*}
& X=5^{4}\left\{2\left(a^{5}-110 a^{3} b^{2}+605 a b^{4}\right)-16\left(5 a^{4} b-110 a^{2} b^{3}+121 b^{5}\right)\right\} \\
& Y=5^{4}\left\{-1\left(a^{5}-110 a^{3} b^{2}+605 a b^{4}\right)-17\left(5 a^{4} b-110 a^{2} b^{3}+121 b^{5}\right)\right\} \tag{17}
\end{align*}
$$

To obtain the integer solutions, replacing a by 5 A and b by 5 B in (5) \& (17), the corresponding integer solutions of (1) are given by

$$
\begin{align*}
& x=15^{3} 5^{4}\left\{2\left(A^{5}-110 A^{3} B^{2}+605 A B^{4}\right)-16\left(5 A^{4} B-110 A^{2} B^{3}+121 B^{5}\right)\right\} \\
& y=15^{3} 5^{4}\left\{-1\left(A^{5}-110 A^{3} B^{2}+605 A B^{4}\right)-17\left(5 A^{4} B-110 A^{2} B^{3}+121 B^{5}\right)\right\} \tag{18}\\
& z=15 W
\end{align*}
$$

Thus (5) and (18) represents the integer solutions to (1).

CONCLUSION:

In this paper, we have presented four different methods of obtaining infinitely many non-zero distinct integer solutions of the non-homogeneous given by $3\left(x^{2}+y^{2}\right)-5 x y=15 z^{5}$. To conclude, one may search for integer solutions to the other choice of non-homogeneous ternary quintic Diophantine equations along with suitable properties.

REFERENCES:

[1] Dickson, L.E. 1952. History of Theory of Numbers, Vol.11, Chelsea Publishing company, New York.
[2] Mordell, L.J. 1969. Diophantine equations, Academic Press, London.
Telang, S.G. 1996. Number theory, Tata Mc Graw Hill publishing company, New Delhi .
[4] Carmichael, R.D. 1959. The theory of numbers and Diophantine Analysis,Dover publications, New York.
[5] M.A.Gopalan., S.Vidhyalakshmi, J.Shanthi:The non-homogeneous quintic equation with five unknowns " $x^{4}-y^{4}+2 k\left(x^{2}+y^{2}\right)(x-y+k)=\left(a^{2}+b^{2}\right)\left(z^{2}-w^{2}\right) p^{3 n "}$, Open Journal Applied and theoretical Mathematics, volume-2,Number 3, 08-13, September 2016.
[6] S.Vidhiyalakshmi, T.Mahalakshmi,V.Anbuvalli,M.A.Gopalan" On non-homogeneous quintic equation with five unknowns " $3\left(x^{4}-y^{4}\right)=4\left(z^{2}-w^{2}\right) T^{3 "} \quad$,Vidyabharathi international Interdisplinary Research Journal, A special issue on recent research trends in management,science and technology, 1969-1972 August 2021.
[7] M.A.Gopalan., and A. Vijsyashankar., Integral solutions of ternary quintic Diophantine equation $x^{2}+(2 k+1) y^{2}=z^{5}$ International Journal of Mathematical and Sciences, 19(1-2), 165-169,2010.
[8] M.A.Gopalan., G.Sumathi and S.Vidhyalakshmi., Integral solutions of non-homogeneous ternary quintic equation in terms of pell equation JAMS, vol-6, No-1, 56-62,2013.

Peer Reviewed Journal

ISSN 2581-7795
[9] M.A. Gopalan., S. Vidhyalakshmi., and K.Lakshmi., "Integral Solutions of the nonhomogeneous equation ternary quadratic Diophantine equation $a x^{2}+b y^{2}=(a+b) z^{5}, a>b>0 "$, Archimedes Journal of Mathematics, vol-3,No-2, 197204, 2013.
[10] M.A. Gopalan and G. Sangeetha, " Integral Solutions of ternary quadratic Diophantine equation $x^{2}+y^{2}=\left(k^{2}+1\right) z^{5}$ ",Bulletin of Pure and Applied Sciences, vol-29, No-1, 2328, 2010.
[11] M.A.Gopalan., S. Vidhyalakshmi., and A. Kavitha, "Observations on the quintic equation with four unknowns $\left(x^{3}+y^{3}\right)\left(x^{2}+x y+y^{2}\right)+(x+y)\left(x^{2}+y^{2}\right) w^{2}=z\left(x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}\right)$ ", Impact J. Sci. Tech., Vol.7, No-2, 15-19, 2013.
[12] M.A.Gopalan., S. Vidhyalakshmi., and A. Kavitha, "On the quintic equation with four unknowns $x^{4}-y^{4}=2\left(k^{2}+l^{2}\right) z^{4} w "$, Bessel J.Math., 3(2), 187-193,2013.
[13] M.A.Gopalan., S. Vidhyalakshmi., A. Kavitha., and E.Premalatha, "On the quintic equation with five unknowns $x^{3}-y^{3}=z^{3}-w^{3}+6 t^{5}$ ", International Journal of Current Research, vol-5, Iss:6,1437-1440, 2013.
[14] M.A.Gopalan., S. Vidhyalakshmi., and A. Kavitha., "On the quintic equation with five unknowns $2(x-y)\left(x^{3}+y^{3}\right)=19\left(z^{2}-w^{2}\right) P^{3}$ ", International Journal of Engineering Research Online, vol-1, Iss:2, 2013.
[15] M.A.Gopalan., V.Krithika., and A.Vijayasankar, " Integral solutions of nonhomogeneous quintic equation with five unknowns $3\left(x^{4}-y^{4}\right)=26\left(z^{2}-w^{2}\right) P^{3}$ ", International Journal of Research - GRANTHAALAYAH,Vol-5, Iss:8, 25-33, 2017.
S.Vidhyalakshmi, T. Mahalakshmi, G. Dhanalakshmi, M.A. Gopalan, On The NonHomogeneous Quintic Equation with Five Unknowns $\left(x^{4}-y^{4}\right)=13 P^{3}\left(z^{2}-w^{2}\right)$, IAR J Eng Tech, 1(1), 43-49,2020.

